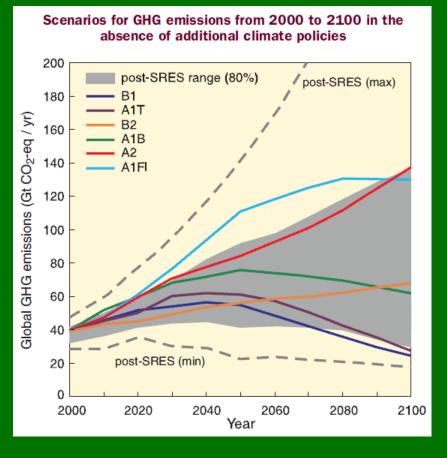
Confronting Climate Change: *Vetiver System Applications*

The Fifth International Conference on Vetiver (ICV-5)


Vetiver and Climate Change

Lucknow, India, October 28-30, 2011

Jim Smyle, President TVNI

Climate Change Effects: 2100

Change seems certain; most scenarios negative, some worse than others.

Temperature?: 1.1 – 6.4^oC (locally highly variable)

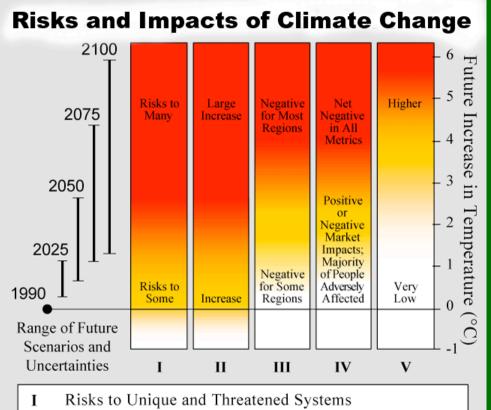
Sea Level Rise?: 0.18 – 0.59m (locally highly variable)

Precipitation?: increase >20% (high latitudes) – decrease >20% (subtropical)

Climate Change Effects

Fresh water: Generally, dry drier & wet wetter | Aridity expands | Extreme events increase, greater rainfall variability | Intense flood risk increase | Surface supplies, esp. glaciers & snow, reduced

Ecosystems: Resilience of many exceeded this century


Food: \rightarrow If temperature rise $\leq 3 \,^{\circ}$ C, potential production may increase w/ CO₂ fertilization, but decrease if temperatures higher (surge followed by collapse)

Coastal areas: Sea level rise | Salinization of fresh water (rivers, estuaries, groundwater) | Increased coastal erosion (tropical storms, mangrove and coal reef loss | Flooding (storm surge, inundation)

Temperatures: Extremes of heat & cold more frequent

Why Be Concerned?

- Frequency and Severity of Extreme Climate Events Π
- Global Distribution and Balance of Impacts Ш
- Total Economic and Ecological Impact IV
- Risk of Irreversible Large-Scale and Abrupt Transitions v

Proven & green environmental solutions

Who Are The Most Vulnerable?

Source: Maplecroft, 2011

Climate Change: India

Indian Network for Climate Change Assessment (INCCA), 2010

- Objective: ascertain CC impacts in 2030s.
- Four major regions: Himalayan, North Eastern, Western Ghats, & Coastal Region

Impacts by 2030

Temperature: + 1.7°C to 2.0°C w/ greater seasonal variability Extreme temperatures: daily maximum & minimum intensify **Precipitation:** small increase in annual; fewer rainy days **Extreme Precipitation:** increased frequency Cyclones: fewer, more intense Storm surge (coastal): 5% to 20% increase Sea-level Rise: on average, slight increase (50 -80mm)

Impacts by 2030

- Water availability: variable, generally wetter = increase & drier = decrease
- Sediment yields: up to 25% increase, most areas
- Floods: 10% to 30%, compared to 1970s, most regions
- **Drought:** earlier onset, moderate extreme in southern portion NE; West Coast; most severe in Himalayas
- Crop Water Demand: increases 5% 20% in Himalayas & NE; variable Coastal Zone; decrease nominal to 5% other areas

Impact Pathways

- Reduced dry season flows & droughts
- Higher peak flows & flash flooding
- Increased landsliding
- Salinization coastal areas
- Urban water supply & drainage
- Infrastructure stability (dams, bridges, roads, etc.)

Source: INCCA, 2010

Impact Pathways

- Land degradation & loss: erosion/flood/ sediment
- Agriculture: overall declines in total yield for all regions & most crops (rice, sorghum, maize, mustard, wheat, apple)
- Increased temperature/humidity stress on livestock

• Food security (high risk) source: Maplecroft, 2010 Source: INCCA, 2010

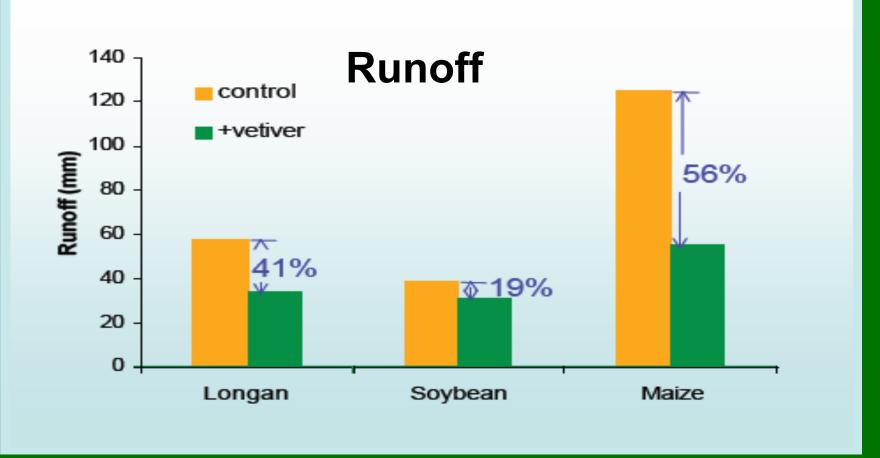
VS Applications: Climate Change Adaptation & Enhancing Resilience

		↓ Runoff			T 0	~	Others
	Soil &	Velocity &			Infra.	Slope &	(Fodder/
	Moistu re	Trap		Enhance	Protection &	River Bank	Thatching/
Impact Pathways	Cons.	Sediment	Divert Flows	Infiltration	Stabilization	Stabilization	Mulch)
↓ Dry season flows & droughts	X			Х			X
↑ Peak flows & flash flooding	X	X	X	X	X	X	X
↑ Landsliding		Χ	X			X	
↑ Salinization					X		
Urban water				X		X	
supply/drainage							
Infrastructure stability (dams, bridges, roads)		Х	Х		Х	Х	
Land loss & degradation	X	X	X	X	X	X	
Ag:↓total yield	X	Х		Χ			X
↑ Temp/humidity & stress livestock	X			X			X
↓ Food security	Х	Х	Χ	Х			

SOIL AND WATER CONSERVATION

Sehore - Madhya Pradesh. India 1% slope - black cotton soil

North-west Ethiopia - 1,500 asl 20% slope - volcanic soil


Reduce Runoff Velocity & Trap Sediment

areen environmental solutions

Enhance Infiltration

Source: B. Deesaeng, J. Pheunda, C. Onarsa and A. Boonsaner. 2006. Vetiver potential for increasing groundwater recharge. Watershed Research Division, Wildlife and Plant Conservation Department. Bangkok, Thailand

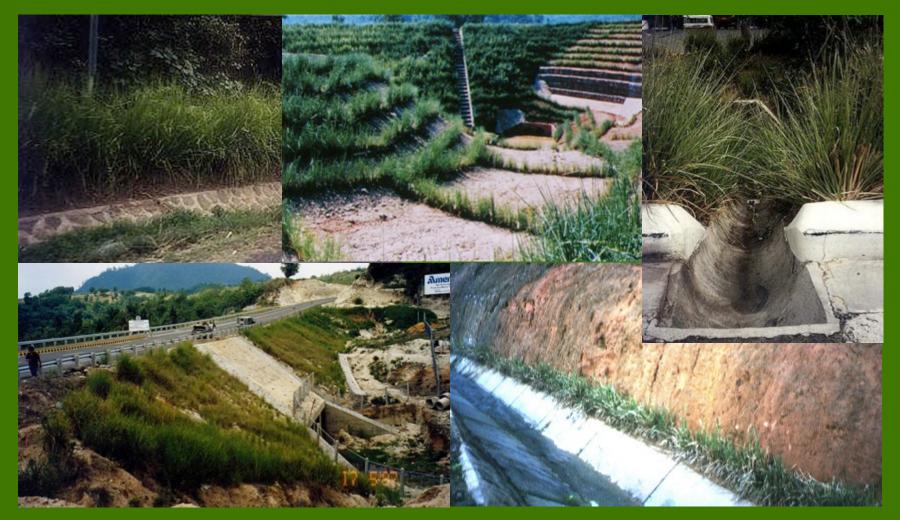
Divert Flows

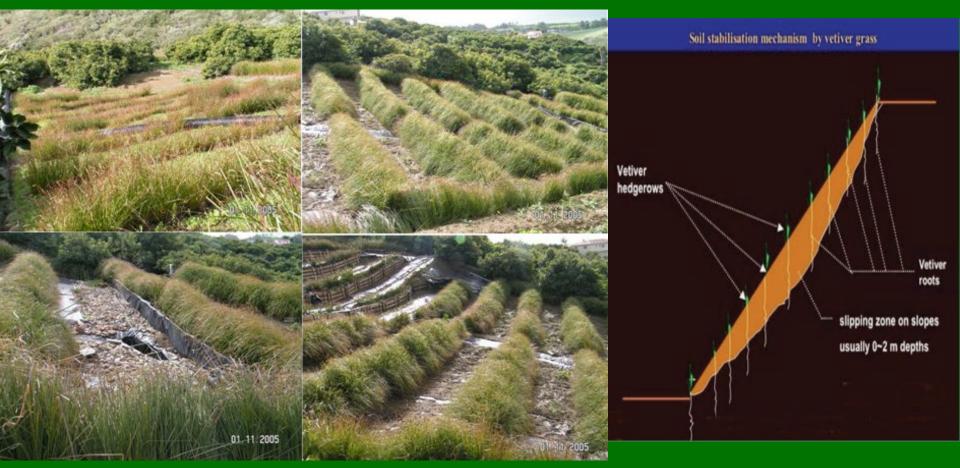
Infrastructure Protection

Brazil – Residential Slope Stabilization

Infrastructure Stabilization

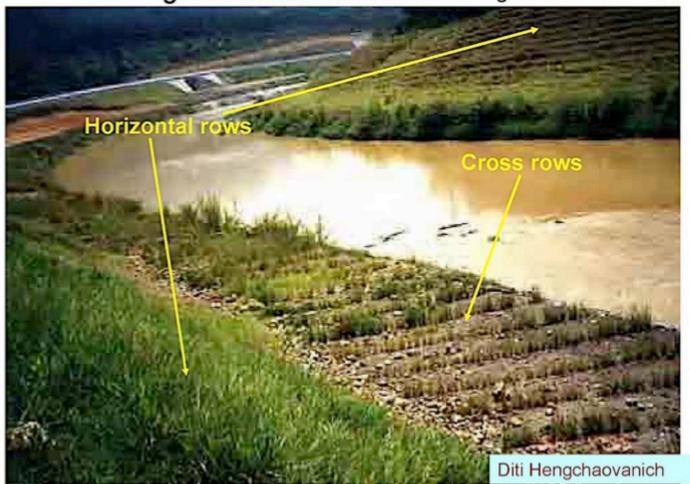
Malaysia – Highway Stabilization


Sea Dike Protection


Viet Nam: Wave Overtopping Simulator Tests - Vetiver grass could suffer a maximum wave overtopping discharge of up to 120 l/s per m.

Protection of Interfaces Between Dissimilar Materials

Slope Stabilization



USA California: a farmer showed he could stop his slope slipping. Results after 4 years.

River Bank Stabilization

Malaysia: An outstanding success, several floods did not damage this river. Photo Credit Diti Hangchaovanich

Others: Fodder & Thatching

Karnataka, Mysore District: farmers have been using Vetiver for generations for fodder

Venezuela: Vetiver roof thatching

Proven & green environmental solutions

Others: Mulch

Congo (DRC): Vetiver hedgerow & mulch w/pineapple.

VS Applications: Climate Change Adaptation & Enhancing Resilience

- Two "types" of adaptation:
 - Autonomous: adaptation that farmers, groups, communities can make privately.
 - Planned: thru govt. actions & spending with the goal of enhancing the capacity of populations to adapt.

 VS greatest strength for CC adaptation = tool people apply themselves...gives them capacity to respond to risks posed by CC.

VS Applications: Enhancing Adaptation Capacity & Resilience

- Enhancing people's capacity to adapt is a considered one of the top priorities for responding to climate change...VS can do that.
- By using the VS, individuals and communities increase their resilience in the face of CC...another top priority for climate change response.

VS Applications: No Regrets

- Systems that can effectively cope with existing weather variability will be more successful in adapting to future climate change than those that cannot.
- Even in the absence of climate change, anything you do with Vetiver is going to help you given current climate.

VS For Mitigation

- High importance of better understanding VS potential for mitigation
- Prioritize climate change adaptation:
 - Mitigation financing uncertain
 - Where adaptation presents the opportunity to leverage additional benefits from mitigation, it would make sense to do so.
 - Many VS applications can have mitigation benefits

These property of the

The second secon

Thank You!

The Vetiver Network International Proven & green environmental solutions

